• <del id="a8uas"></del>
    • 千鋒教育-做有情懷、有良心、有品質(zhì)的職業(yè)教育機構(gòu)

      400-811-9990
      手機站
      千鋒教育

      千鋒學習站 | 隨時隨地免費學

      千鋒教育

      掃一掃進入千鋒手機站

      領(lǐng)取全套視頻
      千鋒教育

      關(guān)注千鋒學習站小程序
      隨時隨地免費學習課程

      上海
      • 北京
      • 鄭州
      • 武漢
      • 成都
      • 西安
      • 沈陽
      • 廣州
      • 南京
      • 深圳
      • 大連
      • 青島
      • 杭州
      • 重慶
      當前位置:合肥千鋒IT培訓  >  技術(shù)干貨  >  mysql怎么查詢連續(xù)時間段的最大值?

      mysql怎么查詢連續(xù)時間段的最大值?

      來源:千鋒教育
      發(fā)布人:xqq
      時間: 2023-10-18 02:03:45

      一、mysql怎么查詢連續(xù)時間段的最大值

      按儀器與時間(處理成小時)group by,計算值的數(shù)量與和,再根據(jù)結(jié)果判斷值數(shù)量是否有缺失值,以及和的最大值。首先要明確采集標準,比如說一分鐘采集一條記錄,那么可以group by 小時。

      – Step1 創(chuàng)建表

      CREATE TABLE monitor(

      id int not null auto_increment,

      seq_no int,

      add_time DATETIME,

      stat int,

      primary key(id)

      );

      — Step2 初始化記錄,這里的6點和7點的數(shù)據(jù)完整,其中6點的有重復記錄。

      INSERT INTO monitor(seq_no,add_time,stat)

      SELECT 1,’2021-6-10 6:0′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:1′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:2′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:3′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:4′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:5′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:6′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:7′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:8′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:9′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:10′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:11′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:12′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:13′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:14′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:15′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:16′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:17′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:18′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:19′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:20′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:21′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:22′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:23′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:24′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:25′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:26′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:27′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:28′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:29′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:30′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:31′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:32′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:33′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:34′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:35′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:36′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:37′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:38′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:39′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:40′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:41′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:42′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:43′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:44′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:45′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:46′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:47′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:48′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:49′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:50′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:51′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:52′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:53′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:54′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:55′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:56′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:57′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:58′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:58′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 6:59′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:0′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:1′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:2′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:3′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:4′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:5′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:6′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:7′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:8′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:9′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:10′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:11′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:12′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:13′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:14′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:15′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:16′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:17′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:18′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:19′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:20′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:21′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:22′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:23′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:24′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:25′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:26′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:27′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:28′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:29′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:30′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:31′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:32′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:33′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:34′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:35′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:36′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:37′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:38′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:39′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:40′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:41′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:42′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:43′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:44′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:45′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:46′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:47′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:48′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:49′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:50′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:51′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:52′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:53′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:54′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:55′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:56′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:57′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:58′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 1,’2021-6-10 7:59′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:1′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:2′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:3′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:4′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:5′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:6′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:7′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:8′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:9′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:10′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:11′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:12′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:13′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:14′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:15′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:16′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:17′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:18′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:19′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:20′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:21′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:22′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:23′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:24′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:25′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:26′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:27′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:28′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:29′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:30′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:31′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:32′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:33′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:34′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:35′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:36′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:37′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:38′ ,FLOOR(1 + (RAND() * 101)) UNION ALL

      SELECT 2,’2021-6-10 8:39′ ,FLOOR(1 + (RAND() * 101)) ;

      — Step3 查詢

      — scenario1 查詢不完整的,這里加去重是為了剔除重復記錄。

      SELECT seq_no,CONCAT(DATE(add_time),’#’,HOUR(add_time))date_hour,COUNT(DISTINCT add_time) record_cnt

      FROM monitor A

      GROUP BY seq_no,CONCAT(DATE(add_time),’#’,HOUR(add_time))

      HAVING COUNT(DISTINCT add_time)<60

      /*

      結(jié)果

      seq_no date_hour record_cnt

      2?? 2021-06-10#8? 39

      */

      — scenario1,按天查詢固定小時周期內(nèi)總和的最大值,如果有重復數(shù)據(jù)需加邏輯去重(當前未考慮)

      SELECT SUBSTR(date_hour,1,INSTR(date_hour,’#’)-1) date_only,MAX(sum_hour) max_daily

      FROM

      ??? (

      ?????? SELECT A.seq_no,B.date_hour,SUM(A.stat) sum_hour

      ?????? FROM monitor A

      ?????? JOIN(

      ?????????? SELECT seq_no,CONCAT(DATE(add_time),’#’,HOUR(add_time)) date_hour,COUNT(DISTINCT add_time) record_cnt

      ?????????? FROM monitor A

      ?????????? GROUP BY seq_no,CONCAT(DATE(add_time),’ ‘,HOUR(add_time))

      ?????????? HAVING COUNT(DISTINCT add_time)=60

      ?????????? )B

      ?????????? ON A.seq_no = B.seq_no

      ?????????? AND CONCAT(DATE(add_time),’#’,HOUR(add_time)) = B.date_hour

      ?????? GROUP BY A.seq_no,B.date_hour

      ??? )C

      GROUP BY SUBSTR(date_hour,1,INSTR(date_hour,’#’)-1)

      /*

      結(jié)果

      date_only max_daily

      2021-06-10 3289

      */

      — 3 針對任意小時的,建議通過存儲過程(定義起始時間、時間比較跨度)結(jié)合窗口函數(shù)(:= 模擬窗口函數(shù))處理

      — 補注 1 當前腳本用了隨機數(shù),關(guān)于字段state的統(tǒng)計結(jié)果不固定。

      —????? 2 當前演示數(shù)據(jù)庫是mysql 5.6.14。

      延伸閱讀:

      二、什么是數(shù)據(jù)庫和數(shù)據(jù)庫管理系統(tǒng)

      數(shù)據(jù)庫的應用非常廣泛,舉個例子,我們平時在瀏覽器上搜索內(nèi)容,就要用到數(shù)據(jù)庫去檢索我們的關(guān)鍵字。以前我們可能會用數(shù)組、集合、文件等來存儲數(shù)據(jù),但是接下來我們就會面臨一個問題,當存儲的數(shù)據(jù)或內(nèi)容過多的時候,我們?nèi)绾稳ゾ珳实恼业轿覀冃枰臇|西,這時候數(shù)據(jù)庫管理系統(tǒng)就派上了用場。除此之外,數(shù)據(jù)庫管理系統(tǒng)還能永久的儲存我們的數(shù)據(jù)。

      為了便于大家理解,這里先給大家講解幾個概念

      DB數(shù)據(jù)庫(database):存儲數(shù)據(jù)的“倉庫”。它保存了一系列有組織的數(shù)據(jù)。

      DBMS數(shù)據(jù)庫管理系統(tǒng)(Database Management System):數(shù)據(jù)庫是通過DBMS創(chuàng)建和操作的容器。

      SQL,結(jié)構(gòu)化查詢語言(Structured Query Language)用一句話概括,SQL是一種特殊目的的編程語言,一種專門用來與數(shù)據(jù)庫通信的語言。在數(shù)據(jù)庫中,數(shù)據(jù)被結(jié)構(gòu)化并存儲在不同的表中,從而簡化了訪問,更新和操作數(shù)據(jù)的過程。該表由列和行組成。數(shù)據(jù)庫中的表可以在關(guān)系的幫助下進行連接。要在數(shù)據(jù)庫中執(zhí)行與數(shù)據(jù)相關(guān)的任務,可以使用SQL。SQL代表結(jié)構(gòu)化查詢語言,旨在在特定RDBMS內(nèi)創(chuàng)建,修改和管理數(shù)據(jù)庫中的數(shù)據(jù)。

      SQL優(yōu)點:

      1、不是某個特定數(shù)據(jù)庫供應商專有的語言,幾乎所有DBMS(數(shù)據(jù)庫管理系統(tǒng))都支持SQL

      2、簡單易學

      3、雖然簡單,但實際上是一種強有力的語言,靈活使用其語言元素,可以進行非常復雜和高級的數(shù)據(jù)庫操作。

      聲明:本站稿件版權(quán)均屬千鋒教育所有,未經(jīng)許可不得擅自轉(zhuǎn)載。

      猜你喜歡LIKE

      常用JS前端開發(fā)框架有哪些?

      2023-10-18

      讀寫分離為什么能夠提升性能?

      2023-10-18

      為什么noteexpress不能建立數(shù)據(jù)庫也不能打開別的數(shù)據(jù)庫?

      2023-10-18

      最新文章NEW

      為什么mysql innodDB中組合索引中范圍查詢后的條件索引會失效?

      2023-10-18

      QQ這種大型數(shù)據(jù)庫是怎么實現(xiàn)數(shù)據(jù)瞬間查詢的?

      2023-10-18

      網(wǎng)站使用大帶寬服務器有什么好處?

      2023-10-18

      相關(guān)推薦HOT

      更多>>

      快速通道 更多>>

      最新開班信息 更多>>

      網(wǎng)友熱搜 更多>>